hexyz is tower defense game, and a lua library for dealing with hexagonal grids
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
5.5 KiB

----- [[ AXIAL/CUBE COORDINATE SYSTEM FOR AMULET/LUA]] -------------------------
--[[ author@churchianity.ca
-- INTRODUCTION
this is a library for making grids of hexagons using lua.
it has made use of exclusively standard lua 5.2 functionality,
making it as portable as possible. it doesn't even use a point
class, (or classes/metatables at all) simply returning tables
of integers, which can later be unpacked into your amulet
vectors, or whatever else you want to use.
this can result in some nasty looking lines with lots of table
unpacks, but if your graphics library likes traditional lua
types, you will be better off.
it supports triangular, hexagonal, rectangular, and
parallelogram map shapes.
it supports non-regular hexagons, though it's trickier to get
working in amulet. TODO work on this.
-- NOTE ON ORIENTATION + AMULET
because of the way amulet draws hexagons (amulet essentially
draws a 6-sided circle from a centerpoint, instead of of a
series of lines connecting points), the flat orientation is
default and recommended. other orientations are possible
with am.rotate, but can cause aliasing issues. TODO work on this.
-- RESOURCES USED TO DEVELOP THIS LIBRARY
https://redblobgames.com/grid/hexagons - simply amazing. amit is a god.
http://amulet.xyz/doc - amulet documentation
TODO that place that had the inner circle/outer circle ratio??
]]
----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- just incase you don't already have a rounding function.
function round(n)
return n % 1 >= 0.5 and math.ceil(n) or math.floor(n)
end
---- [[ HEX CONSTANTS ]] -------------------------------------------------------
-- all possible vector directions from a given hex by edge
HEX_DIRECTIONS = {{ 1 , 0},
{ 1 , -1},
{ 0 , -1},
{-1 , 0},
{-1 , 1},
{ 0 , 1}}
-- HEX UTILITY FUNCTIONS -------------------------------------------------------
function hex_round(s, t)
rs = round(s)
rt = round(t)
rz = round(-s - t)
sdelta = math.abs(rs - s)
tdelta = math.abs(rt - t)
zdelta = math.abs(rz + s + t)
if sdelta > tdelta and sdelta > zdelta then
rs = -rt - rz
elseif tdelta > zdelta then
rt = -rs - rz
else
rz = -rs - rt
end
return {rs, rt}
end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation.
FLAT_ORIENTATION = {3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5,
2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0}
-- forward & inverse matrices used for the pointy orientation.
POINTY_ORIENTATION = {3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0,
3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0}
-- layout.
function layout(size, orientation, origin, width, height, radius)
return {size = size or {11, 11},
orientation = orientation or FLAT_ORIENTATION,
origin = origin or {0, 0},
width = width or 45,
height = height or 31,
radius = radius or width or 6}
end
-- hex to screen
function hex_to_pixel(s, t, layout)
M = layout.orientation
x = (M[1] * s + M[2] * t) * layout.size[1]
y = (M[3] * s + M[4] * t) * layout.size[2]
return {x + layout.origin[1], y + layout.origin[2]}
end
-- screen to hex
function pixel_to_hex(x, y, layout)
M = layout.orientation
px = {(x - layout.origin[1]) / layout.size[1],
(y - layout.origin[2]) / layout.size[2]}
s = M[5] * px[1] + M[6] * px[2]
t = M[7] * px[1] + M[8] * px[2]
return hex_round(s, t)
end
----- [[ MAP STORAGE & RETRIEVAL ]] --------------------------------------------
--[[ all functions return a table of tables; a map of points
storage functions take a range of hex coordinates, and return pixel ones.
retrieval functions do the opposite.
everything except map shape is determined by layout.
pick a pair of functions based on the shape of map you want to use.
it is not advised to use a single layout instance with multiple shapes. ]]
-- returns parallelogram-shaped map. width and height are used.
function ogram_map_store(layout)
map = {}
for s = 0, layout.width do
for t = 0, layout.height do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns triangular map. radius is used as the triangle side length.
function tri_map_store(layout)
map = {}
for s = 0, layout.radius do
for t = layout.radius - s, layout.radius do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns hexagonal map. length of map is radius * 2 + 1
function hex_map_store(layout)
map = {}
for s = -layout.radius, layout.radius do
t1 = math.max(-layout.radius, -s - layout.radius)
t2 = math.min(layout.radius, -s + layout.radius)
for t = t1, t2 do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns rectangular map. width and height are used.
function rect_map_store(layout)
map = {}
for s = 0, layout.width do
soffset = math.floor(s / 2)
for t = -soffset, layout.height - soffset do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end