|
|
----- [[ AXIAL/CUBE COORDINATE SYSTEM FOR AMULET/LUA]] ------------------------- --[[ author@churchianity.ca -- INTRODUCTION this is a library for making grids of hexagons using lua. it has made use of exclusively standard lua 5.2 functionality, making it as portable as possible. it doesn't even use a point
class, (or classes/metatables at all) simply returning tables of integers, which can later be unpacked into your amulet vectors, or whatever else you want to use.
this can result in some nasty looking lines with lots of table unpacks, but if your graphics library likes traditional lua types, you will be better off.
it supports triangular, hexagonal, rectangular, and parallelogram map shapes. it supports non-regular hexagons, though it's trickier to get
working in amulet. TODO work on this.
-- NOTE ON ORIENTATION + AMULET because of the way amulet draws hexagons (amulet essentially draws a 6-sided circle from a centerpoint, instead of of a series of lines connecting points), the flat orientation is default and recommended. other orientations are possible with am.rotate, but can cause aliasing issues. TODO work on this.
-- RESOURCES USED TO DEVELOP THIS LIBRARY https://redblobgames.com/grid/hexagons - simply amazing. amit is a god. http://amulet.xyz/doc - amulet documentation TODO that place that had the inner circle/outer circle ratio??
]]
----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- just incase you don't already have a rounding function. function round(n) return n % 1 >= 0.5 and math.ceil(n) or math.floor(n) end
---- [[ HEX CONSTANTS ]] -------------------------------------------------------
-- all possible vector directions from a given hex by edge HEX_DIRECTIONS = {{ 1 , 0}, { 1 , -1}, { 0 , -1}, {-1 , 0}, {-1 , 1}, { 0 , 1}}
-- HEX UTILITY FUNCTIONS -------------------------------------------------------
function hex_round(s, t) rs = round(s) rt = round(t) rz = round(-s - t)
sdelta = math.abs(rs - s) tdelta = math.abs(rt - t) zdelta = math.abs(rz + s + t)
if sdelta > tdelta and sdelta > zdelta then rs = -rt - rz elseif tdelta > zdelta then rt = -rs - rz else rz = -rs - rt end
return {rs, rt} end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation. FLAT_ORIENTATION = {3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5, 2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0}
-- forward & inverse matrices used for the pointy orientation. POINTY_ORIENTATION = {3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0, 3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0}
-- layout. function layout(size, orientation, origin, width, height, radius) return {size = size or {11, 11}, orientation = orientation or FLAT_ORIENTATION, origin = origin or {0, 0}, width = width or 45, height = height or 31, radius = radius or width or 6} end
-- hex to screen function hex_to_pixel(s, t, layout) M = layout.orientation x = (M[1] * s + M[2] * t) * layout.size[1] y = (M[3] * s + M[4] * t) * layout.size[2]
return {x + layout.origin[1], y + layout.origin[2]} end
-- screen to hex function pixel_to_hex(x, y, layout) M = layout.orientation
px = {(x - layout.origin[1]) / layout.size[1], (y - layout.origin[2]) / layout.size[2]}
s = M[5] * px[1] + M[6] * px[2] t = M[7] * px[1] + M[8] * px[2]
return hex_round(s, t) end
----- [[ MAP STORAGE & RETRIEVAL ]] -------------------------------------------- --[[ all functions return a table of tables; a map of points storage functions take a range of hex coordinates, and return pixel ones. retrieval functions do the opposite. everything except map shape is determined by layout. pick a pair of functions based on the shape of map you want to use. it is not advised to use a single layout instance with multiple shapes. ]]
-- returns parallelogram-shaped map. width and height are used. function ogram_map_store(layout) map = {} for s = 0, layout.width do for t = 0, layout.height do table.insert(map, hex_to_pixel(s, t, layout)) end end return map end
-- returns triangular map. radius is used as the triangle side length. function tri_map_store(layout) map = {} for s = 0, layout.radius do for t = layout.radius - s, layout.radius do table.insert(map, hex_to_pixel(s, t, layout)) end end return map end
-- returns hexagonal map. length of map is radius * 2 + 1 function hex_map_store(layout) map = {} for s = -layout.radius, layout.radius do t1 = math.max(-layout.radius, -s - layout.radius) t2 = math.min(layout.radius, -s + layout.radius)
for t = t1, t2 do table.insert(map, hex_to_pixel(s, t, layout)) end end return map end
-- returns rectangular map. width and height are used. function rect_map_store(layout) map = {} for s = 0, layout.width do soffset = math.floor(s / 2)
for t = -soffset, layout.height - soffset do table.insert(map, hex_to_pixel(s, t, layout)) end end return map end
|