#ifndef ARRAY_H #define ARRAY_H #include // operator new, operator delete #include "alloc.h" // allocators... #include "serialize.h" // serialization #include "string.h" // String::memcpy #include "types.h" // type definitions // this is a dynamic array (grows as needed) // should work with any data type for T including primitive types // some initial |capacity| is heap-allocated and a pointer is stored to it as |data| // the |length| of the array, or number of filled slots is also tracked. // // it implements a single constructor, and operator new. no destructor, or operator overloading besides that. // remember to use ->data or .data to actually access the underlying array. // // overhead: // size of the struct will be 128 bits on 64-bit platforms // note that if you heap allocate this structure and store it on another struct, you will have to chase two pointers to get at the data. // to avoid this, I often include this struct in other structs so there's only one pointer dereference, // just like including a raw pointer array + length in your struct. // because I like to do this, automatic destructors are not useful. // template struct Array { u32 length; u32 capacity; T* data; Array(u32 _capacity = 8) { TYPES_H_FTAG; this->length = 0; this->capacity = _capacity; this->data = (T*) pCalloc(sizeof (T), _capacity); } void* operator new(size_t size) { TYPES_H_FTAG; return pMalloc((u32) size); } void checkIfShouldGrow() { TYPES_H_FTAG; if (this->isFull()) { // optimal number as you approach infinite elements approaches PHI, but 1.5 sometimes works better for finite sizes // more testing is probably needed this->capacity = (u32) (this->capacity * 1.5); this->data = (T*) pRealloc(data, sizeof(T) * this->capacity); } } // for when the order in the array doesn't matter, move the end of the array into the removed slot void removeSwapWithEnd(u32 index) { TYPES_H_FTAG; if (this->isEmpty()) return; // overhead, maybe assert instead? u32 end = this->length - 1; if (index != end) { this->data[index] = this->data[end]; } this->pop(); } void removeSwapWithEnd(T* addr) { TYPES_H_FTAG; for (u32 i = 0; i < this->length; i++) { if ((this->data + i) == addr) { removeSwapWithEnd(i); return; } } } void removeAndShrink(u32 index) { TYPES_H_FTAG; for (u32 i = index + 1; i < this->length; i++) { String::memcpy(this->data[i - 1], this->data[i], sizeof(T)); } this->length--; } void removeAndShrink(T* elementAddr) { TYPES_H_FTAG; s32 index = -1; for (u32 i = 0; i < this->length; i++) { if ((this->data + i) == elementAddr) { index = i; break; } } if (index == -1) { return; } for (u32 i = index + 1; i < this->length; i++) { String::memcpy((void*)(this->data + i - 1), (void*)(this->data + i), sizeof(T)); } this->length--; } T pop() { TYPES_H_FTAG; if (this->isEmpty()) { die("empty"); } return this->data[--this->length]; } // sometimes, you want to copy some POD data on the stack to the next position in the internal array // that's what this does u32 pushCopy(T* e) { TYPES_H_FTAG; this->checkIfShouldGrow(); String::memcpy((void*) &this->data[this->length++], e, sizeof(T)); return this->length - 1; } // returns the next address into which you can store a T. makes sure there's enough room first. // it is irresponsible to call this and then not store a T in that address. this increments length, // reserving the next spot for you. T* pushNextAddrPromise() { TYPES_H_FTAG; this->checkIfShouldGrow(); return &this->data[this->length++]; } u32 push(T e) { TYPES_H_FTAG; this->checkIfShouldGrow(); this->data[this->length++] = e; return this->length - 1; } u32 pushMany(T* elements, u32 count) { TYPES_H_FTAG; // ensure we have capacity. if we have to realloc multiple times that can suck, // but should be avoidable in practice by having an appropriately large initial capacity while (this->capacity < (this->length + count)) { this->capacity *= 1.5; this->data = (T*) pRealloc(data, sizeof (T) * this->capacity); } u32 start = this->length; for (u32 i1 = start, i2 = 0; i1 < count; i1++, i2++) { this->data[this->length++] = elements[i2]; } return start; } void reverse() { TYPES_H_FTAG; u32 count = this->length / 2; for (u32 i = 0; i < count; i++) { u32 offset = this->length - 1 - i; T temp = this->data[i]; this->data[i] = this->data[offset]; this->data[offset] = temp; } } T shift() { TYPES_H_FTAG; if (this->length == 0) { return null; } T out = this->data[0]; this->length -= 1; for (u32 i = 0; i < this->length; i++) { *(this->data + i) = *(this->data + i + 1); } return out; } T unshift(T e) { TYPES_H_FTAG; this->checkIfShouldGrow(); for (u32 i = 0; i < this->length; i++) { *(this->data + i + 1) = *(this->data + i); } this->data[0] = e; this->length += 1; return this->length; } T peek() const { TYPES_H_FTAG; if (this->isEmpty()) { return null; } return this->data[this->length - 1]; } bool isEmpty() const { TYPES_H_FTAG; return this->length == 0; } bool isFull() const { TYPES_H_FTAG; return this->length == this->capacity; } void clear() { TYPES_H_FTAG; this->length = 0; } }; template static void serialize(String* str, Array array) { TYPES_H_FTAG; serialize(str, array.length); serialize(str, array.capacity); for (u32 i = 0; i < array.length; i++) { serialize(str, array.data[i]); } } template static void serialize(String* str, Array* array) { TYPES_H_FTAG; SERIALIZE_HANDLE_NULL(str, array); serialize(str, array->length); serialize(str, array->capacity); for (u32 i = 0; i < array->length; i++) { serialize(str, array->data[i]); } } template static void deserialize(char** buffer, Array* array) { TYPES_H_FTAG; deserialize(buffer, &array->length); deserialize(buffer, &array->capacity); for (u32 i = 0; i < array->length; i++) { deserialize(buffer, array->data + i); } } template static void deserialize(char** buffer, Array** array) { TYPES_H_FTAG; DESERIALIZE_HANDLE_NULL(buffer, array); u32 length, capacity; deserialize(buffer, &length); deserialize(buffer, &capacity); Array* _array = new Array(capacity); _array->length = length; for (u32 i = 0; i < _array->length; i++) { deserialize(buffer, _array->data + i); } *array = _array; } #endif