hexyz is tower defense game, and a lua library for dealing with hexagonal grids
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
6.7 KiB

----- [[ AXIAL/CUBE COORDINATE SYSTEM FOR AMULET/LUA]] -------------------------
--[[ author@churchianity.ca
-- INTRODUCTION
this is a library for making grids of hexagons using lua.
it has made exclusive (though not thorough) use of standard lua
5.2 functionality, making it as portable as possible. it
doesn't even use a point class, simply returning tables
of integers, which can later be unpacked into your amulet
vectors, or whatever else you want to use. in honor of amulet,
when necessary to name cube/hex coordinates, (s, t, z) is the
convention.
only returning tables can result in some nasty looking lines
with lots of table unpacks, but if your graphics library likes
traditional lua types, you will be better off.
it supports triangular, hexagonal, rectangular, and
parallelogram map shapes.
it supports non-regular hexagons, though it's trickier to get
working in amulet. TODO work on this.
-- NOTE ON ORIENTATION + AMULET
because of the way amulet draws hexagons (amulet essentially
draws a 6-sided circle from a centerpoint, instead of of a
series of lines connecting points), the flat orientation is
default and recommended. other orientations are possible
with am.rotate, but can cause aliasing issues. TODO work on this.
-- TODO NOTE -
amulet has another draw function I neglected, simply am.draw.
i don't understand how it works, but it seems to be able to
draw arbitrary polygons via a list of vertices. so.
-- RESOURCES USED TO DEVELOP THIS LIBRARY
https://redblobgames.com/grid/hexagons - simply amazing. amit is a god.
http://amulet.xyz/doc - amulet documentation
TODO that place that had the inner circle/outer circle ratio??
]]
----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- just incase you don't already have a rounding function.
function round(n)
return n % 1 >= 0.5 and math.ceil(n) or math.floor(n)
end
---- [[ HEX CONSTANTS ]] -------------------------------------------------------
-- all possible vector directions from a given hex by edge
HEX_DIRECTIONS = {{ 1 , 0},
{ 1 , -1},
{ 0 , -1},
{-1 , 0},
{-1 , 1},
{ 0 , 1}}
-- HEX UTILITY FUNCTIONS -------------------------------------------------------
function hex_round(s, t)
rs = round(s)
rt = round(t)
rz = round(-s - t)
sdelta = math.abs(rs - s)
tdelta = math.abs(rt - t)
zdelta = math.abs(rz - (-s - t))
if sdelta > tdelta and sdelta > zdelta then
rs = -rt - rz
elseif tdelta > zdelta then
rt = -rs - rz
else
rz = -rs - rt
end
return {rs, rt}
end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation.
local FLAT = {3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5,
2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0}
-- forward & inverse matrices used for the pointy orientation.
local POINTY = {3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0,
3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0}
-- layout.
function layout_init(origin, size, orientation)
return {origin = origin or {0, 0},
size = size or {11, 11},
orientation = orientation or FLAT}
end
-- hex to screen
function hex_to_pixel(s, t, layout)
M = layout.orientation
x = (M[1] * s + M[2] * t) * layout.size[1]
y = (M[3] * s + M[4] * t) * layout.size[2]
return {x + layout.origin[1], y + layout.origin[2]}
end
-- screen to hex
function pixel_to_hex(x, y, layout)
M = layout.orientation
px = {(x - layout.origin[1]) / layout.size[1],
(y - layout.origin[2]) / layout.size[2]}
s = M[5] * px[1] + M[6] * px[2]
t = M[7] * px[1] + M[8] * px[2]
return hex_round(s, t)
end
----- [[ MAP STORAGE & RETRIEVAL ]] --------------------------------------------
--[[ _init functions return a table of tables;
a map of points in a chosen shape and specified layout.
the shape, as well as the layout used is stored in a metatable
for reuse.
]]
-- returns parallelogram-shaped map.
function map_parallelogram_init(layout, width, height)
map = {}
setmetatable(map, {__index={layout=layout,
shape="parallelogram",
width=width,
height=height}})
for s = 0, width do
for t = 0, height do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns triangular map.
function map_triangular_init(layout, size)
map = {}
setmetatable(map, {__index={layout=layout,
shape="triangular",
size=size}})
for s = 0, size do
for t = size - s, size do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns hexagonal map. length of map is radius * 2 + 1
function map_hexagonal_init(layout, radius)
map = {}
setmetatable(map, {__index={layout=layout,
shape="hexagonal",
radius=radius}})
for s = -radius, radius do
t1 = math.max(-radius, -s - radius)
t2 = math.min(radius, -s + radius)
for t = t1, t2 do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- returns rectangular map.
function map_rectangular_init(layout, width, height)
map = {}
setmetatable(map, {__index={layout=layout,
shape="rectangular",
width=width,
height=height}})
for s = 0, width do
soffset = math.floor(s/2)
for t = -soffset, height - soffset do
table.insert(map, hex_to_pixel(s, t, layout))
end
end
return map
end
-- places single hex into map table, if it is not already present.
function map_store(map)
end
-- retrieves single hex from map table. explodes if can't find it.
function map_retrieve(map, hex)
if map.shape == "rectangular" then
if map.layout.orientation == FLAT then
return {hex[1] + math.floor(hex[2]/2), hex[2]}
else
return {hex[1], hex[2] + math.floor(hex[1]/2)}
end
elseif map.shape == "hexagonal" then
if map.layout.orientation == FLAT then
else
end
elseif map.shape == "parallelogram" then
if map.layout.orientation == FLAT then
else
end
else
end
end