hexyz is tower defense game, and a lua library for dealing with hexagonal grids
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

239 lines
6.2 KiB

----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- rounds numbers. would've been cool to have math.round in lua.
local function round(n)
return n % 1 >= 0.5 and math.ceil(n) or math.floor(n)
end
----- [[ UI FUNCTIONS ]] -------------------------------------------------------
----- [[ HEX CONSTANTS & UTILITY FUNCTIONS ]] ----------------------------------
-- all possible vector directions from a given hex by edge
local CUBE_DIRECTIONS = {vec2( 1 , 0),
vec2( 1 , -1),
vec2( 0 , -1),
vec2(-1 , 0),
vec2(-1 , 1),
vec2( 0 , 1)}
-- return hex vector direction via integer index |direction|.
function cube_direction(direction)
return CUBE_DIRECTIONS[(6 + (direction % 6)) % 6 + 1]
end
-- return hexagon adjacent to |hex| in integer index |direction|.
function cube_neighbour(hex, direction)
return hex + HEX_DIRECTIONS[(6 + (direction % 6)) % 6 + 1]
end
-- TODO rotations are different depending on the coordinate system you use.
-- implement this for cube/axial, and doubled.
function cube_rotate_left(hex)
end
function cube_rotate_right(hex)
end
-- rounds a float coordinate trio |x, y, z| to its nearest integer coordinate trio.
-- TODO make work with a table {x, y, z} and vec3(x, y, z)
function cube_round(x, y, z)
local rx = round(x)
local ry = round(y)
local rz = round(z) or round(-x - y)
local xdelta = math.abs(rx - x)
local ydelta = math.abs(ry - y)
local zdelta = math.abs(rz - z)
if xdelta > ydelta and xdelta > zdelta then
rx = -ry - rz
elseif ydelta > zdelta then
ry = -rx - rz
else
rz = -rx - ry
end
return vec3(rx, ry, rz)
end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation.
local FLAT = {M = mat2(3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5 ),
W = mat2(2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0),
start_angle = 0.0}
-- forward & inverse matrices used for the pointy orientation.
local POINTY = {M = mat2(3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0),
W = mat2(3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0),
start_angle = 0.5}
-- stores layout: information that does not pertain to map shape
function layout(origin, size, orientation)
return {origin = origin or vec2(0),
size = size or vec2(11),
orientation = orientation or FLAT}
end
-- hex to screen
function cube_to_pixel(cube, layout)
local M = layout.orientation.M
local x = (M[1][1] * cube.x + M[1][2] * cube.y) * layout.size.x
local y = (M[2][1] * cube.x + M[2][2] * cube.y) * layout.size.y
return vec2(x + layout.origin.x, y + layout.origin.y)
end
-- screen to hex
function pixel_to_cube(pix, layout)
local W = layout.orientation.W
local pix = (pix - layout.origin) / layout.size
local s = W[1][1] * pix.x + W[1][2] * pix.y
local t = W[2][1] * pix.x + W[2][2] * pix.y
return cube_round(s, t, -s - t)
end
function hex_corner_offset(corner, layout)
local angle = 2.0 * math.pi * layout.orientation.start_angle + corner / 6
return vec2(layout.size.x * math.cos(angle), layout.size.y * math.sin(angle))
end
function hex_corners(hex, layout)
local corners = {}
end
function cube_to_offset(cube)
return vec2(cube.x, -cube.x - cube.y + (cube.x + (cube.x % 2)) / 2)
end
function offset_to_cube(off)
end
function cube_to_doubled(cube)
return vec2(cube.x, 2 * (-cube.x - cube.y) + cube.x)
end
function doubled_to_cube(dbl)
return vec2(dbl.x, (dbl.y - dbl.x) / 2)
end
----- [[ MAP STORAGE & RETRIEVAL ]] --------------------------------------------
--[[
TODO make all functions work regardless of layout. as it stands, they kind
of do, just not always nicely.
]]
-- returns ordered ring-shaped map of |radius| from |center|.
function ring_map(center, radius)
local map = {}
local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
local walk = center + HEX_DIRECTIONS[6] * radius
for i = 1, 6 do
for j = 1, radius do
table.insert(map, walk)
walk = hex_neighbour(walk, i)
end
end
return map
end
--[[ returns ordered hexagonal map of |radius| rings from |center|.
the only difference between hex_spiral_map and hex_hexagonal_map is that
hex_spiral_map is ordered, in a spiral path from the |center|.
]]
function spiral_map(center, radius)
local map = {center}
local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
for i = 1, radius do
table.append(map, hex_ring_map(center, i))
end
return map
end
-- returns unordered parallelogram-shaped map of |width| and |height|.
function parallelogram_map(width, height)
local map = {}
local mt = {__index={width=width, height=height}}
setmetatable(map, mt)
for i = 0, width do
for j = 0, height do
map[vec2(i, -j)] = true
end
end
return map
end
-- returns unordered triangular map of |size|.
function triangular_map(size)
local map = {}
local mt = {__index={size=size}}
setmetatable(map, mt)
for i = 0, size do
for j = size - s, size do
map[vec2(i, j)] = true
end
end
return map
end
-- returns unordered hexagonal map of |radius|.
function hexagonal_map(radius)
local map = {}
local mt = {__index={radius=radius}}
setmetatable(map, mt)
for i = -radius, radius do
local j1 = math.max(-radius, -i - radius)
local j2 = math.min(radius, -i + radius)
for j = j1, j2 do
map[vec2(i, j)] = true
end
end
return map
end
-- returns unordered rectangular map of |width| and |height|.
function rectangular_map(width, height)
local map = {}
local mt = {__index={width=width, height=height}}
setmetatable(map, mt)
for i = 0, width do
for j = 0, height do
map[vec2(i, -j - math.floor(i/2))] = true
end
end
return map
end
----- [[ TESTS ]] --------------------------------------------------------------