|
|
----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- rounds numbers. would've been cool to have math.round in lua. local function round(n) return n % 1 >= 0.5 and math.ceil(n) or math.floor(n) end
----- [[ HEX CONSTANTS & UTILITY FUNCTIONS ]] ----------------------------------
-- all possible vector directions from a given hex by edge local CUBE_DIRECTIONS = {vec2( 1 , 0), vec2( 1 , -1), vec2( 0 , -1), vec2(-1 , 0), vec2(-1 , 1), vec2( 0 , 1)}
-- return hex vector direction via integer index |direction|. function cube_direction(direction) return CUBE_DIRECTIONS[(6 + (direction % 6)) % 6 + 1] end
-- return hexagon adjacent to |hex| in integer index |direction|. function cube_neighbour(hex, direction) return hex + HEX_DIRECTIONS[(6 + (direction % 6)) % 6 + 1] end
-- TODO rotations are different depending on the coordinate system you use. -- implement this for cube/axial, and doubled. function cube_rotate_left(hex)
end
function cube_rotate_right(hex)
end
-- rounds a float coordinate trio |x, y, z| to its nearest integer coordinate trio. -- TODO make work with a table {x, y, z} and vec3(x, y, z) function cube_round(x, y, z) local rx = round(x) local ry = round(y) local rz = round(z)
local xdelta = math.abs(rx - x) local ydelta = math.abs(ry - y) local zdelta = math.abs(rz - z)
if xdelta > ydelta and xdelta > zdelta then rx = -ry - rz elseif ydelta > zdelta then rx = -ry - rz else rz = -rx - ry end
return vec3(rx, ry, rz) end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation. local FLAT = {M = mat2(3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5 ), W = mat2(2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0), start_angle = 0.0}
-- forward & inverse matrices used for the pointy orientation. local POINTY = {M = mat2(3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0), W = mat2(3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0), start_angle = 0.5}
-- stores layout: information that does not pertain to map shape function layout(origin, size, orientation) return {origin = origin or vec2(0), size = size or vec2(11), orientation = orientation or FLAT} end
-- hex to screen function cube_to_pixel(cube, layout) local M = layout.orientation.M
local x = (M[1][1] * cube.x + M[1][2] * cube.y) * layout.size.x local y = (M[2][1] * cube.x + M[2][2] * cube.y) * layout.size.y
return vec2(x + layout.origin.x, y + layout.origin.y) end
-- screen to hex function pixel_to_cube(pix, layout) local W = layout.orientation.W
local pix = (pix - layout.origin) / layout.size
local s = W[1][1] * pix.x + W[1][2] * pix.y local t = W[2][1] * pix.x + W[2][2] * pix.y
return cube_round(s, t, -s - t) end
function hex_corner_offset(corner, layout) local angle = 2.0 * math.pi * layout.orientation.start_angle + corner / 6 return vec2(layout.size.x * math.cos(angle), layout.size.y * math.sin(angle)) end
function hex_corners(hex, layout) local corners = {} end
function cube_to_offset(cube)
end
function offset_to_cube(off)
end
function cube_to_doubled(cube) return vec2(cube.x, 2 * (-cube.x - cube.y) + cube.x) end
function doubled_to_cube(dbl) return vec2(dbl.x, (dbl.y - dbl.x) / 2) end
----- [[ MAP STORAGE & RETRIEVAL ]] -------------------------------------------- --[[ TODO make all functions work regardless of layout. as it stands, they kind of do, just not always nicely. ]]
-- returns ordered ring-shaped map of |radius| from |center|. function ring_map(center, radius) local map = {} local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
local walk = center + HEX_DIRECTIONS[6] * radius
for i = 1, 6 do for j = 1, radius do table.insert(map, walk) walk = hex_neighbour(walk, i) end end return map end
--[[ returns ordered hexagonal map of |radius| rings from |center|. the only difference between hex_spiral_map and hex_hexagonal_map is that hex_spiral_map is ordered, in a spiral path from the |center|. ]] function spiral_map(center, radius) local map = {center} local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
for i = 1, radius do table.append(map, hex_ring_map(center, i)) end return map end
-- returns unordered parallelogram-shaped map of |width| and |height|. function parallelogram_map(width, height) local map = {} local mt = {__index={width=width, height=height}}
setmetatable(map, mt)
for s = 0, width do for t = 0, height do map[vec2(s, t)] = true end end return map end
-- returns unordered triangular map of |size|. function triangular_map(size) local map = {} local mt = {__index={size=size}}
setmetatable(map, mt)
for s = 0, size do for t = size - s, size do map[vec2(s, t)] = true end end return map end
-- returns unordered hexagonal map of |radius|. function hexagonal_map(radius) local map = {} local mt = {__index={radius=radius}}
setmetatable(map, mt)
for s = -radius, radius do local t1 = math.max(-radius, -s - radius) local t2 = math.min(radius, -s + radius)
for t = t1, t2 do map[vec2(s, t)] = true end end return map end
-- returns unordered rectangular map of |width| and |height|. function rectangular_map(width, height) local map = {} local mt = {__index={width=width, height=height}}
setmetatable(map, mt)
for s = 0, width do for t = 0, height do map[vec2(s, t - math.floor(s/2))] = true end end return map end
----- [[ TESTS ]] --------------------------------------------------------------
|