|
|
if not math.round then math.round = function(n) return math.floor(n + 0.5) end else log("clobbering a math.round function.") end
-- wherever 'orientation' appears as an argument, use one of these two, or set a default just below ORIENTATION = { -- Forward & Inverse Matrices used for the Flat Orientation FLAT = { M = mat2(3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5 ), W = mat2(2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0), angle = 0.0 }, -- Forward & Inverse Matrices used for the Pointy Orientation POINTY = { M = mat2(3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0), W = mat2(3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0), angle = 0.5 } }
-- whenver |orientation| appears as an argument, if it isn't provided, this is used instead. local DEFAULT_ORIENTATION = ORIENTATION.FLAT
-- whenever |size| for a hexagon appears as an argument, if it isn't provided, use this -- 'size' here is distance from the centerpoint to any vertex in pixel local DEFAULT_HEX_SIZE = vec2(20)
-- actual width (longest contained horizontal line) of the hexagon function hex_width(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION
if orientation == ORIENTATION.FLAT then return size * 2
elseif orientation == ORIENTATION.POINTY then return math.sqrt(3) * size end end
-- actual height (tallest contained vertical line) of the hexagon function hex_height(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION
if orientation == ORIENTATION.FLAT then return math.sqrt(3) * size
elseif orientation == ORIENTATION.POINTY then return size * 2 end end
-- returns actual width and height of a hexagon given it's |size| which is the distance from the centerpoint to any vertex in pixels function hex_dimensions(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION return vec2(hex_width(size, orientation), hex_height(size, orientation)) end
-- distance between two horizontally adjacent hexagon centerpoints function hex_horizontal_spacing(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION
if orientation == ORIENTATION.FLAT then return hex_width(size, orientation) * 3/4
elseif orientation == ORIENTATION.POINTY then return hex_height(size, orientation) end end
-- distance between two vertically adjacent hexagon centerpoints function hex_vertical_spacing(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION
if orientation == ORIENTATION.FLAT then return hex_height(size, orientation)
elseif orientation == ORIENTATION.POINTY then return hex_width(size, orientation) * 3/4 end end
-- returns the distance between adjacent hexagon centers in a grid function hex_spacing(size, orientation) local orientation = orientation or DEFAULT_ORIENTATION return vec2(hex_horizontal_spacing(size, orientation), hex_vertical_spacing(size, orientation)) end
-- All Non-Diagonal Vector Directions from a Given Hex by Edge HEX_DIRECTIONS = { vec2( 1 , -1), vec2( 1 , 0), vec2(0 , 1), vec2(-1 , 1), vec2(-1 , 0), vec2(0 , -1) }
-- Return Hex Vector Direction via Integer Index |direction| function hex_direction(direction) return HEX_DIRECTIONS[(direction % 6) % 6 + 1] end
-- Return Hexagon Adjacent to |hex| in Integer Index |direction| function hex_neighbour(hex, direction) return hex + HEX_DIRECTIONS[(direction % 6) % 6 + 1] end
-- Collect All 6 Neighbours in a Table function hex_neighbours(hex) local neighbours = {} for i = 1, 6 do table.insert(neighbours, hex_neighbour(hex, i)) end return neighbours end
-- Returns a vec2 Which is the Nearest |x, y| to Float Trio |x, y, z| -- assumes you have a working math.round function (should be guarded at top of this file) local function hex_round(x, y, z) local rx = math.round(x) local ry = math.round(y) local rz = math.round(z) or math.round(-x - y)
local xdelta = math.abs(rx - x) local ydelta = math.abs(ry - y) local zdelta = math.abs(rz - z or math.round(-x - y))
if xdelta > ydelta and xdelta > zdelta then rx = -ry - rz elseif ydelta > zdelta then ry = -rx - rz else rz = -rx - ry end
return vec2(rx, ry) end
-- Hex to Screen -- Orientation Must be Either POINTY or FLAT function hex_to_pixel(hex, size, orientation) local M = orientation and orientation.M or DEFAULT_ORIENTATION.M
local x = (M[1][1] * hex[1] + M[1][2] * hex[2]) * (size and size[1] or DEFAULT_HEX_SIZE[1]) local y = (M[2][1] * hex[1] + M[2][2] * hex[2]) * (size and size[2] or DEFAULT_HEX_SIZE[2])
return vec2(x, y) end
-- Screen to Hex -- Orientation Must be Either POINTY or FLAT function pixel_to_hex(pix, size, orientation) local W = orientation and orientation.W or DEFAULT_ORIENTATION.W
local pix = pix / (size or vec2(DEFAULT_HEX_SIZE))
local x = W[1][1] * pix[1] + W[1][2] * pix[2] local y = W[2][1] * pix[1] + W[2][2] * pix[2]
return hex_round(x, y, -x - y) end
-- TODO test, learn am.draw function hex_corner_offset(corner, size, orientation) local orientation = orientation or DEFAULT_ORIENTATION local angle = 2.0 * math.pi * orientation.angle + corner / 6 return vec2(size[1] * math.cos(angle), size[2] * math.sin(angle)) end
-- TODO test this thing function hex_corners(hex, size, orientation) local orientation = orientation or DEFAULT_ORIENTATION local corners = {} local center = hex_to_pixel(hex, size, orientation) for i = 0, 5 do local offset = hex_corner_offset(i, size, orientation) table.insert(corners, center + offset) end return corners end
-- @TODO test function hex_to_oddr(hex) local z = -hex.x - hex.y return vec2(hex.x + (z - (z % 2)) / 2) end
-- @TODO test function oddr_to_hex(oddr) return vec2(hex.x - (hex.y - (hex.y % 2)) / 2, -hex.x - hex.y) end
-- @TODO test function hex_to_evenr(hex) local z = -hex.x - hex.y return vec2(hex.x + (z + (z % 2)) / 2, z) end
-- @TODO test function evenr_to_hex(evenr) return vec2(hex.x - (hex.y + (hex.y % 2)) / 2, -hex.x - hex.y) end
-- @TODO test function hex_to_oddq(hex) return vec2(hex.x, -hex.x - hex.y + (hex.x - (hex.x % 2)) / 2) end
-- @TODO test function oddq_to_hex(oddq) return vec2(hex.x, -hex.x - (hex.y - (hex.x - (hex.y % 2)) / 2)) end
function hex_to_evenq(hex) return vec2(hex.x, (-hex.x - hex.y) + (hex.x + (hex.x % 2)) / 2) end
function evenq_to_hex(evenq) return vec2(evenq.x, -evenq.x - (evenq.y - (evenq.x + (evenq.x % 2)) / 2)) end
--============================================================================ -- MAPS & STORAGE
-- Returns Ordered Ring-Shaped Map of |radius| from |center| function ring_map(center, radius) local map = {}
local walk = center + HEX_DIRECTIONS[6] * radius
for i = 1, 6 do for j = 1, radius do table.insert(map, walk) walk = hex_neighbour(walk, i) end end return setmetatable(map, {__index={center=center, radius=radius}}) end
-- Returns Ordered Spiral Hexagonal Map of |radius| Rings from |center| function spiral_map(center, radius) local map = {center}
for i = 1, radius do table.append(map, ring_map(center, i)) end return setmetatable(map, {__index={center=center, radius=radius}}) end
local function map_get(t, x, y) return t[x] and t[x][y] end
local function map_set(t, x, y, v) if t[x] then t[x][y] = v else t[x] = {} t[x][y] = v end
return t end
local function map_traverse(t, callback) for i,_ in pairs(t) do for _,entry in pairs(t[i]) do callback(entry) end end end
-- @NOTE probably shouldn't use this... local function map_partial_set(t, x, y, k, v) local entry = map_get(t, x, y)
if not entry then map_set(t, x, y, { k = v })
else entry.k = v end
return t end
-- Returns Unordered Parallelogram-Shaped Map of |width| and |height| with Simplex Noise function parallelogram_map(width, height, seed) local seed = seed or math.random(width * height)
local map = {} for i = 0, width do map[i] = {} for j = 0, height do
-- Calculate Noise local idelta = i / width local jdelta = j / height local noise = 0
for oct = 1, 6 do local f = 1/4^oct local l = 2^oct local pos = vec2(idelta + seed * width, jdelta + seed * height) noise = noise + f * math.simplex(pos * l) end map[i][j] = noise end end return setmetatable(map, { __index = { width = width, height = height, seed = seed, get = function(x, y) return map_get(map, x, y) end, set = function(x, y, v) return map_set(map, x, y, v) end, partial = function(x, y, k, v) return map_partial_set(map, x, y, k, v) end, traverse = function(callback) return map_traverse(map, callback) end, neighbours = function(hex) return table.filter(hex_neighbours(hex), function(_hex) return map.get(_hex.x, _hex.y) end) end }}) end
-- Returns Unordered Triangular (Equilateral) Map of |size| with Simplex Noise function triangular_map(size, seed) local seed = seed or math.random(size * math.cos(size) / 2)
local map = {} for i = 0, size do map[i] = {} for j = size - i, size do
-- Generate Noise local idelta = i / size local jdelta = j / size local noise = 0
for oct = 1, 6 do local f = 1/3^oct local l = 2^oct local pos = vec2(idelta + seed * size, jdelta + seed * size) noise = noise + f * math.simplex(pos * l) end map[i][j] = noise end end return setmetatable(map, { __index = { size = size, seed = seed, get = function(x, y) return map_get(map, x, y) end, set = function(x, y, v) return map_set(map, x, y, v) end, partial = function(x, y, k, v) return map_partial_set(map, x, y, k, v) end, traverse = function(callback) return map_traverse(map, callback) end, neighbours = function(hex) return table.filter(hex_neighbours(hex), function(_hex) return map.get(_hex.x, _hex.y) end) end }}) end
-- Returns Unordered Hexagonal Map of |radius| with Simplex Noise function hexagonal_map(radius, seed) local seed = seed or math.random(radius * 2 * math.pi)
local map = {} for i = -radius, radius do map[i] = {}
local j1 = math.max(-radius, -i - radius) local j2 = math.min(radius, -i + radius)
for j = j1, j2 do
-- Calculate Noise local idelta = i / radius local jdelta = j / radius local noise = 0
for oct = 1, 6 do local f = 2/3^oct local l = 2^oct local pos = vec2(idelta + seed * radius, jdelta + seed * radius)
noise = noise + f * math.simplex(pos * l) end map[i][j] = noise end end return setmetatable(map, { __index = { radius = radius, seed = seed, get = function(x, y) return map_get(map, x, y) end, set = function(x, y, v) return map_set(map, x, y, v) end, partial = function(x, y, k, v) return map_partial_set(map, x, y, k, v) end, traverse = function(callback) return map_traverse(map, callback) end, neighbours = function(hex) return table.filter(hex_neighbours(hex), function(_hex) return map.get(_hex.x, _hex.y) end) end }}) end
-- Returns Unordered Rectangular Map of |width| and |height| with Simplex Noise function rectangular_map(width, height, seed) local seed = seed or math.random(width * height)
local map = {} for i = 0, width - 1 do map[i] = {} for j = 0, height - 1 do
-- Begin to Calculate Noise local idelta = i / width local jdelta = j / height local noise = 0
for oct = 1, 6 do local f = 2/3^oct local l = 2^oct local pos = vec2(idelta + seed * width, jdelta + seed * height) noise = noise + f * math.simplex(pos * l) end j = j - math.floor(i/2) -- this is what makes it rectangular
map[i][j] = noise end end return setmetatable(map, { __index = { width = width, height = height, seed = seed, get = function(x, y) return map_get(map, x, y) end, set = function(x, y, v) return map_set(map, x, y, v) end, partial = function(x, y, k, v) return map_partial_set(map, x, y, k, v) end, traverse = function(callback) return map_traverse(map, callback) end, neighbours = function(hex) return table.filter(hex_neighbours(hex), function(_hex) return map.get(_hex.x, _hex.y) end) end }}) end
--============================================================================ -- PATHFINDING
function breadth_first(map, start) local frontier = {} frontier[1] = start
local distance = {} distance[start.x] = {} distance[start.x][start.y] = 0
while not (#frontier == 0) do local current = table.remove(frontier, 1)
for _,neighbour in pairs(map.neighbours(current)) do local d = map_get(distance, neighbour.x, neighbour.y) if not d then table.insert(frontier, neighbour) local current_distance = map_get(distance, current.x, current.y) map_set(distance, neighbour.x, neighbour.y, current_distance + 1) end end end
return distance end
function dijkstra(map, start, goal, cost_f) local frontier = {} frontier[1] = { hex = start, priority = 0 }
local came_from = {} came_from[start.x] = {} came_from[start.x][start.y] = false
local cost_so_far = {} cost_so_far[start.x] = {} cost_so_far[start.x][start.y] = 0
while not (#frontier == 0) do local current = table.remove(frontier, 1)
if goal and current.hex == goal then break end
for _,neighbour in pairs(map.neighbours(current.hex)) do local new_cost = map_get(cost_so_far, current.hex.x, current.hex.y) + cost_f(map, current.hex, neighbour) local neighbour_cost = map_get(cost_so_far, neighbour.x, neighbour.y)
if not neighbour_cost or (new_cost < neighbour_cost) then map_set(cost_so_far, neighbour.x, neighbour.y, new_cost) local priority = new_cost + math.distance(start, neighbour) table.insert(frontier, { hex = neighbour, priority = priority }) map_set(came_from, neighbour.x, neighbour.y, current) end end end
return came_from end
-- generic A* pathfinding -- -- |heuristic| has the form: -- function(source, target) -- source and target are vec2's -- return some numeric value -- -- |cost_f| has the form: -- function (from, to) -- from and to are vec2's -- return some numeric value -- -- returns a map that has map[hex.x][hex.y] = { hex = vec2, priority = number }, -- where the hex is the spot it thinks you should go to from the indexed hex, and priority is the cost of that decision, -- as well as 'made_it' a bool that tells you if we were successful in reaching |goal| function Astar(map, start, goal, heuristic, cost_f) local path = {} path[start.x] = {} path[start.x][start.y] = false
local frontier = {} frontier[1] = { hex = start, priority = 0 }
local path_so_far = {} path_so_far[start.x] = {} path_so_far[start.x][start.y] = 0
local made_it = false while not (#frontier == 0) do local current = table.remove(frontier, 1)
if current.hex == goal then made_it = true break end
for _,next_ in pairs(map.neighbours(current.hex)) do local new_cost = map_get(path_so_far, current.hex.x, current.hex.y) + cost_f(map, current.hex, next_) local next_cost = map_get(path_so_far, next_.x, next_.y)
if not next_cost or new_cost < next_cost then map_set(path_so_far, next_.x, next_.y, new_cost) local priority = new_cost + heuristic(goal, next_) table.insert(frontier, { hex = next_, priority = priority }) map_set(path, next_.x, next_.y, current) end end end
return path, made_it end
|