|
|
----- [[ AXIAL/CUBE COORDINATE HEXAGON LIBRARY FOR AMULET/LUA]] ---------------- --[[ author@churchianity.ca -- INTRODUCTION this is a hexagonal grid library for amulet/lua. it uses axial coordinates or cube/hex coordinates when necessary. by amulet convention, hexes are either vec2(s, t) or vec3(s, t, z) but nearly always the former.
-- RESOURCES USED TO DEVELOP THIS LIBRARY, AND FOR WHICH I AM GRATEFUL https://redblobgames.com/grid/hexagons - simply amazing. http://amulet.xyz/doc - amulet documentation ]]
----- [[ GENERALLY USEFUL FUNCTIONS ]] -----------------------------------------
-- rounds numbers. would've been cool to have math.round in lua. local function round(n) return n % 1 >= 0.5 and math.ceil(n) or math.floor(n) end
----- [[ HEX CONSTANTS & UTILITY FUNCTIONS ]] ----------------------------------
-- all possible vector directions from a given hex by edge local HEX_DIRECTIONS = {vec2( 1 , 0), vec2( 1 , -1), vec2( 0 , -1), vec2(-1 , 0), vec2(-1 , 1), vec2( 0 , 1)}
-- return hex vector direction via index |direction|. function hex_direction(direction) return HEX_DIRECTIONS[direction] end
-- return hexagon adjacent to |hex| in |direction| function hex_neighbour(hex, direction) return hex + HEX_DIRECTION[direction] end
-- rounds hexes. without this, pixel_to_hex returns fractional coordinates. -- using single coordinates instead of a vector, because this should only -- ever be called internally. function hex_round(s, t) local rs = round(s) local rt = round(t) local rz = round(-s - t)
local sdelta = math.abs(rs - s) local tdelta = math.abs(rt - t) local zdelta = math.abs(rz - (-s - t))
if sdelta > tdelta and sdelta > zdelta then rs = -rt - rz elseif tdelta > zdelta then rt = -rs - rz else rz = -rs - rt end
return vec2(rs, rt) end
----- [[ LAYOUT, ORIENTATION & COORDINATE CONVERSION ]] -----------------------
-- forward & inverse matrices used for the flat orientation. local FLAT = {M = mat2(3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5 ), W = mat2(2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0)}
-- forward & inverse matrices used for the pointy orientation. local POINTY = {M = mat2(3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0), W = mat2(3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0)}
-- TODO encapsulate hex_to_pixel and pixel_to_hex in layout table. -- stores layout information that does not pertain to map shape function hex_layout(origin, size, orientation) return {origin = origin or vec2(0), size = size or vec2(11), orientation = orientation or FLAT} end
-- hex to screen function hex_to_pixel(hex, layout) local M = layout.orientation.M local x = (M[1][1] * hex.s + M[1][2] * hex.t) * layout.size.x local y = (M[2][1] * hex.s + M[2][2] * hex.t) * layout.size.y
return vec2(x + layout.origin.x, y + layout.origin.y) end
-- screen to hex function pixel_to_hex(pix, layout) local W = layout.orientation.W
local pix = (pix - layout.origin) / layout.size
local s = W[1][1] * pix.x + W[1][2] * pix.y local t = W[2][1] * pix.x + W[2][2] * pix.y
return hex_round(s, t) end
----- [[ MAP STORAGE & RETRIEVAL ]] -------------------------------------------- --[[ ]] -- TODO make all functions work regardless of layout.
-- returns unordered parallelogram-shaped map of |width| and |height|. function hex_parallelogram_map(width, height) local map = {} local mt = {__index={width=width, height=height}} setmetatable(map, mt) for s = 0, width do for t = 0, height do map[vec2(s, t)] = true end end return map end
-- returns unordered triangular map of |size|. function hex_triangular_map(size) local map = {} local mt = {__index={size=size}} setmetatable(map, mt)
for s = 0, size do for t = size - s, size do map[vec2(s, t)] = true end end return map end
-- returns unordered hexagonal map of |radius|. function hex_hexagonal_map(radius) local map = {} local mt = {__index={radius=radius}} setmetatable(map, mt)
for s = -radius, radius do local t1 = math.max(-radius, -s - radius) local t2 = math.min(radius, -s + radius)
for t = t1, t2 do map[vec2(s, t)] = true end end return map end
-- returns unordered rectangular map of |width| and |height|. function hex_rectangular_map(width, height) local map = {} local mt = {__index={width=width, height=height}} setmetatable(map, mt) for s = 0, width do for t = 0, height do map[vec2(s, t)] = true end end return map end
|