|
|
--[[============================================================================ ----- GENERALLY USEFUL FUNCTIONS ----- ============================================================================]]--
-- rounds numbers. would've been cool to have math.round in lua. local function round(n) return n % 1 >= 0.5 and math.ceil(n) or math.floor(n) end
--[[============================================================================ ----- HEX CONSTANTS AND UTILITY FUNCTIONS ----- ============================================================================]]--
-- all possible vector directions from a given hex by edge local CUBE_DIRECTIONS = {vec2( 0 , 1), vec2( 1 , 0), vec2( 1 , -1), vec2( 0 , -1), vec2(-1 , 0), vec2(-1 , 1)}
-- return hex vector direction via integer index |direction|. function cube_direction(direction) return CUBE_DIRECTIONS[(direction % 6) % 6 + 1] end
-- return hexagon adjacent to |hex| in integer index |direction|. function cube_neighbour(hex, direction) return hex + CUBE_DIRECTIONS[(direction % 6) % 6 + 1] end
-- return cube coords at location 60deg away to the left; counter-clockwise function cube_rotate_left(hex) return vec2(hex.x + hex.y, -hex.x) end
-- return cube coords at location 60deg away to the right; clockwise function cube_rotate_right(hex) return vec2(-hex.y, hex.x + hex.y) end
-- rounds a float coordinate trio |x, y, z| to nearest integer coordinate trio local function cube_round(x, y, z) local rx = round(x) local ry = round(y) local rz = round(z) or round(-x - y)
local xdelta = math.abs(rx - x) local ydelta = math.abs(ry - y) local zdelta = math.abs(rz - z or round(-x - y))
if xdelta > ydelta and xdelta > zdelta then rx = -ry - rz elseif ydelta > zdelta then ry = -rx - rz else rz = -rx - ry end return vec2(rx, ry) end
--[[============================================================================ ----- ORIENTATION & LAYOUT ----- ============================================================================]]--
-- forward & inverse matrices used for the flat orientation local FLAT = {M = mat2(3.0/2.0, 0.0, 3.0^0.5/2.0, 3.0^0.5 ), W = mat2(2.0/3.0, 0.0, -1.0/3.0 , 3.0^0.5/3.0), start_angle = 0.0}
-- forward & inverse matrices used for the pointy orientation local POINTY = {M = mat2(3.0^0.5, 3.0^0.5/2.0, 0.0, 3.0/2.0), W = mat2(3.0^0.5/3.0, -1.0/3.0, 0.0, 2.0/3.0), start_angle = 0.5}
-- stores layout: information that does not pertain to map shape function layout(origin, size, orientation) return {origin = origin or vec2(0), size = size or vec2(11), orientation = orientation or FLAT} end
-- hex to screen function cube_to_pixel(cube, layout) local M = layout.orientation.M
local x = (M[1][1] * cube[1] + M[1][2] * cube[2]) * layout.size[1] local y = (M[2][1] * cube[1] + M[2][2] * cube[2]) * layout.size[2]
return vec2(x + layout.origin[1], y + layout.origin[2]) end
-- screen to hex function pixel_to_cube(pix, layout) local W = layout.orientation.W
local pix = (pix - layout.origin) / layout.size
local s = W[1][1] * pix[1] + W[1][2] * pix[2] local t = W[2][1] * pix[1] + W[2][2] * pix[2]
return cube_round(s, t, -s - t) end
-- TODO test, learn am.draw function hex_corner_offset(corner, layout) local angle = 2.0 * math.pi * layout.orientation.start_angle + corner / 6 return vec2(layout.size[1] * math.cos(angle), layout.size[2] * math.sin(angle)) end
-- TODO this thing function hex_corners(hex, layout) local corners = {} end
-- offset coordinates are prettier to look at function cube_to_offset(cube) return vec2(cube[1], -cube[1] - cube[2] + (cube[1] + (cube[1] % 2)) / 2) end
-- back to cube coordinates function offset_to_cube(off) return vec2(off[1], off[2] - off[1] * (off[1] % 2) / 2) end
--[[============================================================================ ----- MAPS & STORAGE ----- MAPS STORE CUBE COORDINATES. MAPS STORE CUBE COORDINATES. MAPS STORE CUBE COOR
This means, you are not to draw using the coordinates stored in your map. You are to draw using the cube_to_pixel of those coordinates.
If you wish to draw a hexagon to the screen, you must first use cube_to_pixel to retrieve the center of the hexagon on each set of cube coordinates stored in your map. Then, depending on how you are going to draw, either call am.circle with |sides| = 6, or gather the vertices with hex_corners and use am.draw - TODO, haven't used am.draw yet.
Information about the maps' dimensions are stored in a metatable, so you can
retrieve details about maps after they are created.
----- NOISE ----- To simplify terrain generation, unordered, hash-like maps automatically calculate and store perlin noise as their values. You can modify the nature of the noise by providing different |frequencies| as a tables of values, for example: {1, 2, 4, 8} or {1, 0.5, 0.25, 0.125}. These just increase the complexity of the curvature of the noise. The default is {1}.
----- TODO ----- TODO make all functions work regardless of layout. as it stands, they kind of do, just not always nicely.
============================================================================]]-- ----- ORDERED MAPS -----
-- returns ordered ring-shaped map of |radius| from |center|. function ring_map(center, radius) local map = {} local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
local walk = center + CUBE_DIRECTIONS[6] * radius
for i = 1, 6 do for j = 1, radius do table.insert(map, walk) walk = cube_neighbour(walk, i) end end return map end
-- returns ordered hexagonal map of |radius| rings from |center|. -- the only difference between spiral_map and hexagonal_map is that -- spiral_map is ordered, in a spiral path from the |center|.
function spiral_map(center, radius) local map = {center} local mt = {__index={center=center, radius=radius}}
setmetatable(map, mt)
for i = 1, radius do table.append(map, ring_map(center, i)) end return map end
----- UNORDERED, HASH-LIKE MAPS -----
-- returns unordered parallelogram-shaped map of |width| and |height| with perlin noise function parallelogram_map(width, height) local map = {} local mt = {__index={width=width, height=height}}
setmetatable(map, mt)
for i = 0, width do for j = 0, height do map[vec2(i, j)] = true end end return map end
-- returns unordered triangular map of |size| with perlin noise function triangular_map(size) local map = {} local mt = {__index={size=size}}
setmetatable(map, mt)
for i = 0, size do for j = size - s, size do map[vec2(i, j)] = true end end return map end
-- returns unordered hexagonal map of |radius| with perlin noise function hexagonal_map(radius) local map = {} local mt = {__index={radius=radius}}
setmetatable(map, mt)
for i = -radius, radius do local j1 = math.max(-radius, -i - radius) local j2 = math.min(radius, -i + radius)
for j = j1, j2 do map[vec2(i, j)] = true end end return map end
-- returns unordered rectangular map of |width| and |height| with perlin noise function rectangular_map(width, height, frequencies)
local map = {} local mt = {__index={width=width, height=height}} local frequencies = frequencies or {1}
setmetatable(map, mt)
for i = 0, width do for j = 0, height do
-- calculate noise local idelta = assert(i / width, "width must be greater than 0") local jdelta = assert(j / height, "height must be greater than 0") local noise = 0
for _,freq in pairs(frequencies) do noise = noise + 1/freq * math.perlin(vec2(freq * idelta, freq * jdelta)) end
-- this is what makes it a rectangle local hex = vec2(i, j - math.floor(i/2))
-- store hex in the map paired with its associated noise value map[hex] = noise end end return map end
--[[============================================================================ ----- NOISE ----- ============================================================================]]--
function simplex_map(frequency, exponent, width, height) local map = {}
for i = 0, height do for j = 0, width do local idelta = i/width - 0.5 local jdelta = j/height - 0.5 map[vec2(i, j)] = math.simplex(idelta, jdelta) end end end
--[[============================================================================ ----- PATHFINDING ----- ============================================================================]]--
--[[============================================================================ ----- TESTS ----- ============================================================================]]--
function test_all() print("it works trust me") end
|