Browse Source

first

master
Nick Hayashi 1 year ago
commit
fca5b64083
  1. 1140
      glad.c
  2. 2129
      glad.h
  3. BIN
      glfw3.dll
  4. 5913
      glfw3.h
  5. BIN
      glfw3.lib
  6. 311
      khrplatform.h
  7. 564
      main.cpp

1140
glad.c
File diff suppressed because it is too large
View File

2129
glad.h
File diff suppressed because it is too large
View File

BIN
glfw3.dll

5913
glfw3.h
File diff suppressed because it is too large
View File

BIN
glfw3.lib

311
khrplatform.h

@ -0,0 +1,311 @@
#ifndef __khrplatform_h_
#define __khrplatform_h_
/*
** Copyright (c) 2008-2018 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/* Khronos platform-specific types and definitions.
*
* The master copy of khrplatform.h is maintained in the Khronos EGL
* Registry repository at https://github.com/KhronosGroup/EGL-Registry
* The last semantic modification to khrplatform.h was at commit ID:
* 67a3e0864c2d75ea5287b9f3d2eb74a745936692
*
* Adopters may modify this file to suit their platform. Adopters are
* encouraged to submit platform specific modifications to the Khronos
* group so that they can be included in future versions of this file.
* Please submit changes by filing pull requests or issues on
* the EGL Registry repository linked above.
*
*
* See the Implementer's Guidelines for information about where this file
* should be located on your system and for more details of its use:
* http://www.khronos.org/registry/implementers_guide.pdf
*
* This file should be included as
* #include <KHR/khrplatform.h>
* by Khronos client API header files that use its types and defines.
*
* The types in khrplatform.h should only be used to define API-specific types.
*
* Types defined in khrplatform.h:
* khronos_int8_t signed 8 bit
* khronos_uint8_t unsigned 8 bit
* khronos_int16_t signed 16 bit
* khronos_uint16_t unsigned 16 bit
* khronos_int32_t signed 32 bit
* khronos_uint32_t unsigned 32 bit
* khronos_int64_t signed 64 bit
* khronos_uint64_t unsigned 64 bit
* khronos_intptr_t signed same number of bits as a pointer
* khronos_uintptr_t unsigned same number of bits as a pointer
* khronos_ssize_t signed size
* khronos_usize_t unsigned size
* khronos_float_t signed 32 bit floating point
* khronos_time_ns_t unsigned 64 bit time in nanoseconds
* khronos_utime_nanoseconds_t unsigned time interval or absolute time in
* nanoseconds
* khronos_stime_nanoseconds_t signed time interval in nanoseconds
* khronos_boolean_enum_t enumerated boolean type. This should
* only be used as a base type when a client API's boolean type is
* an enum. Client APIs which use an integer or other type for
* booleans cannot use this as the base type for their boolean.
*
* Tokens defined in khrplatform.h:
*
* KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values.
*
* KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0.
* KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0.
*
* Calling convention macros defined in this file:
* KHRONOS_APICALL
* KHRONOS_APIENTRY
* KHRONOS_APIATTRIBUTES
*
* These may be used in function prototypes as:
*
* KHRONOS_APICALL void KHRONOS_APIENTRY funcname(
* int arg1,
* int arg2) KHRONOS_APIATTRIBUTES;
*/
#if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC)
# define KHRONOS_STATIC 1
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APICALL
*-------------------------------------------------------------------------
* This precedes the return type of the function in the function prototype.
*/
#if defined(KHRONOS_STATIC)
/* If the preprocessor constant KHRONOS_STATIC is defined, make the
* header compatible with static linking. */
# define KHRONOS_APICALL
#elif defined(_WIN32)
# define KHRONOS_APICALL __declspec(dllimport)
#elif defined (__SYMBIAN32__)
# define KHRONOS_APICALL IMPORT_C
#elif defined(__ANDROID__)
# define KHRONOS_APICALL __attribute__((visibility("default")))
#else
# define KHRONOS_APICALL
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIENTRY
*-------------------------------------------------------------------------
* This follows the return type of the function and precedes the function
* name in the function prototype.
*/
#if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(__SCITECH_SNAP__)
/* Win32 but not WinCE */
# define KHRONOS_APIENTRY __stdcall
#else
# define KHRONOS_APIENTRY
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIATTRIBUTES
*-------------------------------------------------------------------------
* This follows the closing parenthesis of the function prototype arguments.
*/
#if defined (__ARMCC_2__)
#define KHRONOS_APIATTRIBUTES __softfp
#else
#define KHRONOS_APIATTRIBUTES
#endif
/*-------------------------------------------------------------------------
* basic type definitions
*-----------------------------------------------------------------------*/
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__)
/*
* Using <stdint.h>
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
/*
* To support platform where unsigned long cannot be used interchangeably with
* inptr_t (e.g. CHERI-extended ISAs), we can use the stdint.h intptr_t.
* Ideally, we could just use (u)intptr_t everywhere, but this could result in
* ABI breakage if khronos_uintptr_t is changed from unsigned long to
* unsigned long long or similar (this results in different C++ name mangling).
* To avoid changes for existing platforms, we restrict usage of intptr_t to
* platforms where the size of a pointer is larger than the size of long.
*/
#if defined(__SIZEOF_LONG__) && defined(__SIZEOF_POINTER__)
#if __SIZEOF_POINTER__ > __SIZEOF_LONG__
#define KHRONOS_USE_INTPTR_T
#endif
#endif
#elif defined(__VMS ) || defined(__sgi)
/*
* Using <inttypes.h>
*/
#include <inttypes.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(_WIN32) && !defined(__SCITECH_SNAP__)
/*
* Win32
*/
typedef __int32 khronos_int32_t;
typedef unsigned __int32 khronos_uint32_t;
typedef __int64 khronos_int64_t;
typedef unsigned __int64 khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(__sun__) || defined(__digital__)
/*
* Sun or Digital
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#if defined(__arch64__) || defined(_LP64)
typedef long int khronos_int64_t;
typedef unsigned long int khronos_uint64_t;
#else
typedef long long int khronos_int64_t;
typedef unsigned long long int khronos_uint64_t;
#endif /* __arch64__ */
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif 0
/*
* Hypothetical platform with no float or int64 support
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#define KHRONOS_SUPPORT_INT64 0
#define KHRONOS_SUPPORT_FLOAT 0
#else
/*
* Generic fallback
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#endif
/*
* Types that are (so far) the same on all platforms
*/
typedef signed char khronos_int8_t;
typedef unsigned char khronos_uint8_t;
typedef signed short int khronos_int16_t;
typedef unsigned short int khronos_uint16_t;
/*
* Types that differ between LLP64 and LP64 architectures - in LLP64,
* pointers are 64 bits, but 'long' is still 32 bits. Win64 appears
* to be the only LLP64 architecture in current use.
*/
#ifdef KHRONOS_USE_INTPTR_T
typedef intptr_t khronos_intptr_t;
typedef uintptr_t khronos_uintptr_t;
#elif defined(_WIN64)
typedef signed long long int khronos_intptr_t;
typedef unsigned long long int khronos_uintptr_t;
#else
typedef signed long int khronos_intptr_t;
typedef unsigned long int khronos_uintptr_t;
#endif
#if defined(_WIN64)
typedef signed long long int khronos_ssize_t;
typedef unsigned long long int khronos_usize_t;
#else
typedef signed long int khronos_ssize_t;
typedef unsigned long int khronos_usize_t;
#endif
#if KHRONOS_SUPPORT_FLOAT
/*
* Float type
*/
typedef float khronos_float_t;
#endif
#if KHRONOS_SUPPORT_INT64
/* Time types
*
* These types can be used to represent a time interval in nanoseconds or
* an absolute Unadjusted System Time. Unadjusted System Time is the number
* of nanoseconds since some arbitrary system event (e.g. since the last
* time the system booted). The Unadjusted System Time is an unsigned
* 64 bit value that wraps back to 0 every 584 years. Time intervals
* may be either signed or unsigned.
*/
typedef khronos_uint64_t khronos_utime_nanoseconds_t;
typedef khronos_int64_t khronos_stime_nanoseconds_t;
#endif
/*
* Dummy value used to pad enum types to 32 bits.
*/
#ifndef KHRONOS_MAX_ENUM
#define KHRONOS_MAX_ENUM 0x7FFFFFFF
#endif
/*
* Enumerated boolean type
*
* Values other than zero should be considered to be true. Therefore
* comparisons should not be made against KHRONOS_TRUE.
*/
typedef enum {
KHRONOS_FALSE = 0,
KHRONOS_TRUE = 1,
KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM
} khronos_boolean_enum_t;
#endif /* __khrplatform_h_ */

564
main.cpp

@ -0,0 +1,564 @@
#include <stdio.h> // printf, snprintf
#include <stdint.h> // uint16_t
#include <stdlib.h> // srand, rand
#include <time.h> // time
#include <math.h> // cos, sin
#include "glad.h"
#include "glfw3.h"
/*
you can compile this (windows only, debug version, assuming you have cl.exe available) using:
cl.exe glad.c main.cpp /nologo /W3 /MTd /Od /Zi /RTC1 /fsanitize=address /link /out:game.exe /incremental:no glfw3.lib
the .exe will be around 1.5mb in this case.
or, in release version with a smaller .exe size and better perf (181kb with clang-cl, dang just barely missed 128kb total size!), no debugging symbols etc.
clang-cl.exe glad.c main.cpp /nologo /W3 /O2 /GS /clang:-fno-asynchronous-unwind-tables /link /out:game.exe /fixed /incremental:no /opt:icf /opt:ref libvcruntime.lib glfw3.lib
OR
cl.exe glad.c main.cpp /nologo /W3 /O2 /GS /link /out:game.exe /fixed /incremental:no /opt:icf /opt:ref libvcruntime.lib glfw3.lib
the first 10-20 frames in debug mode are prone to run below 60fps on my machine, which I unfortunately wasn't able to fix in 16 hours
- my computer is fairly weak though, it's about 10 years old and has no external GPU. You may fare better :). Subsequent frames perfome
many times better.
- [Y] - snake-like 0 player game
- [Y] - need to support on the order of 8k+ snakes concurrently (we're going to choose a max of 8192)
- [Y] - if the head of a snake touches the tail of another, the snake who's head touched the tail will merge up with the 'eaten' snake.
- [Y] - all snakes start with one segment
- [Y] - when there is only one snake left, the game must restart
- [Y?] - game data under 128kb - achieved if this means game state, not quite if it means .exe size (we're about ~1mb .exe size after trying to minimize size)
- [Y] - 60fps minimum, or locked
- [Y] - static memory allocation, avoid heap
- [Y] - minimal or zero usage of libraries (except glfw and opengl)
*/
static GLFWwindow *Window;
inline bool checkError__(int line) {
GLenum errorCode;
while ((errorCode = glGetError()) != GL_NO_ERROR) {
switch (errorCode) {
case GL_INVALID_ENUM:
printf("%d, INVALID_ENUM", line);
break;
case GL_INVALID_VALUE:
printf("%d, INVALID_VALUE", line);
break;
case GL_INVALID_OPERATION:
printf("%d, INVALID_OPERATION", line);
break;
case GL_OUT_OF_MEMORY:
printf("%d, OUT_OF_MEMORY", line);
break;
case GL_INVALID_FRAMEBUFFER_OPERATION:
printf("%d, INVALID_FRAMEBUFFER_OPERATION", line);
break;
}
return true;
}
return false;
}
#define checkError() checkError__(__LINE__)
static const float PI = 3.14159f;
//--------------------------------------------------------------------------------
// game-data
// between QUADRANTS and pointBuffer, the only real data structures in use,
// you have 116.736kb of game state, assuming 8192 snakes.
int windowWidth;
int windowHeight;
struct Snake {
// coordinates are normalized unsigned integers.
// |numSegments| is just a count, where 0 indicates a dead snake.
uint16_t numSegments, headX, headY, theta;
};
static constexpr float SNAKE_SEGMENT_RADIUS = 8; // glPointSize
static constexpr unsigned int NUM_SNAKES = 8192; // must be greater than 1
struct Rectangle {
uint16_t left, bottom, right, top;
};
static constexpr uint32_t NUM_QUADRANTS = 64;
static constexpr unsigned int SNAKES_PER_QUADRANT = NUM_SNAKES/NUM_QUADRANTS;
struct Quadrant {
Snake snakes[SNAKES_PER_QUADRANT];
Rectangle rect;
};
static Quadrant QUADRANTS[NUM_QUADRANTS];
struct Point {
uint16_t x, y;
uint16_t weight;
};
static Point pointBuffer[NUM_SNAKES]; // each snake starts as one segment which is represented as a point, so you can have at most NUM_SNAKES points.
uint32_t numDead = 0;
uint32_t longest = 0;
uint32_t numPoints = 0;
double msPerFrame = 0.0;
double deltaTime = 0.0;
double lastFrameCountTime = 0.0;
double lastFrameStartTime = 0.0;
bool doFancyRestart = false;
long long int numFramesInLastSecond = 0;
long long int frameCounter = 0;
//--------------------------------------------------------------------------------
static inline uint16_t normalizeUint(uint16_t input, uint32_t oldMax) {
return input * USHRT_MAX / oldMax;
}
static inline float invlerp(float a, float b, float v) {
return (v - a) / (b - a);
}
static inline float lerp(float a, float b, float t) {
return a + t * (b - a);
}
static inline float snakeThetaToRadians(uint16_t a) {
return ((float)a/(float)USHRT_MAX)*2.f*PI;
}
static inline uint16_t radiansToSnakeTheta(float r) {
return (uint16_t) ((r + (0.f*PI)) / (2.f*PI) * (float)USHRT_MAX);
}
static inline void splitRectangleIntoQuadrants(Rectangle input, Rectangle quadrants[4]) {
auto centerX = (input.left + input.right) / 2;
auto centerY = (input.top + input.bottom) / 2;
// top-left quadrant, proceeding clockwise
quadrants[0].left = input.left;
quadrants[0].right = centerX;
quadrants[0].top = input.top;
quadrants[0].bottom = centerY;
quadrants[1].left = centerX;
quadrants[1].right = input.right;
quadrants[1].top = input.top;
quadrants[1].bottom = centerY;
quadrants[2].left = centerX;
quadrants[2].right = input.right;
quadrants[2].top = centerY;
quadrants[2].bottom = input.bottom;
quadrants[3].left = input.left;
quadrants[3].right = centerX;
quadrants[3].top = centerY;
quadrants[3].bottom = input.bottom;
}
static inline uint16_t randInRange(unsigned int min, unsigned int max) {
const unsigned int range = max - min + 1;
return (uint16_t) (min + (unsigned int)((double)rand() / (RAND_MAX + 1.0) * range));
}
static inline void calculateSegment(Snake* snake, uint16_t segmentNumber, Point* outPoint) {
const float weight = (float)segmentNumber / (float)snake->numSegments;
const float radians = snakeThetaToRadians(snake->theta);
const float dx = cos(radians);
const float dy = sin(radians);
outPoint->x = snake->headX + dx * segmentNumber * SNAKE_SEGMENT_RADIUS;
outPoint->y = snake->headY + dy * segmentNumber * SNAKE_SEGMENT_RADIUS;
outPoint->weight = (uint16_t) (weight * USHRT_MAX);
}
static inline void initializeQuadrants(int windowWidth, int windowHeight) {
Rectangle windowQuad = { 0, 0, normalizeUint(windowWidth, windowWidth), normalizeUint(windowHeight, windowHeight) };
Rectangle topLevelQuads[4];
splitRectangleIntoQuadrants(windowQuad, topLevelQuads);
// there's probably a better way to iteratively construct a quadtree...
for (int i = 0; i < 4; i++) {
Rectangle iquads[4];
splitRectangleIntoQuadrants(topLevelQuads[i], iquads);
for (int j = 0; j < 4; j++) {
Rectangle jquads[4];
splitRectangleIntoQuadrants(iquads[j], jquads);
for (int k = 0; k < 4; k++) {
QUADRANTS[i*16+j*4+k].rect = jquads[k];
}
}
}
for (int i = 0; i < NUM_QUADRANTS; i++) {
Quadrant* q= &QUADRANTS[i];
for (int j = 0; j < SNAKES_PER_QUADRANT; j++) {
Snake* snake = &q->snakes[j];
snake->numSegments = 1;
snake->headX = randInRange(q->rect.left, q->rect.right);
snake->headY = randInRange(q->rect.bottom, q->rect.top);
//printf("Snake #%d, quadrant %d - head (x/y): %u/%u, numSegments: %u\n", j+1, i, snake->headX, snake->headY, snake->numSegments);
}
}
}
static inline unsigned int computeQuadrant(int x, int y, int left, int top, int bottom, int right) {
if (x < left || y < bottom || x > right || y > top) {
printf("outside rect!\n");
return -1;
} else if (x < right/2 && y < top/2) {
return 0;
} else if (x >= right/2 && y < top/2) {
return 1;
} else if (x < right/2 && y >= top/2) {
return 2;
} else {
return 3;
}
}
static inline bool findNearestSnakeInQuad(
Quadrant* quad,
Snake* snake,
int searchingSnakeIndex,
float& nearestD,
uint16_t& nearestX,
uint16_t& nearestY,
bool* outHadLiveSnake
) {
for (int j = 0; j < SNAKES_PER_QUADRANT; j++) {
if (searchingSnakeIndex == j) continue;
Snake* other = &quad->snakes[j];
if (other->numSegments == 0) continue; // dead snake, can't bite it
// if we have at least one snake that has a segment, that means this quad has at least one other live snake.
if (outHadLiveSnake) *outHadLiveSnake = true;
// find tail coordinates for this snake
Point tail;
calculateSegment(other, other->numSegments-1, &tail);
// compute distance, check if it's closer than previously recorded
float dx = ((float)snake->headX - (float)tail.x);
float dy = ((float)snake->headY - (float)tail.y);
float distance = sqrt(dx*dx + dy*dy);
if (distance < nearestD) {
nearestD = distance;
nearestX = tail.x;
nearestY = tail.y;
if (distance < SNAKE_SEGMENT_RADIUS*3) {
// if we're close enough, we can call it a bite and early-out.
snake->numSegments += other->numSegments;
other->numSegments = 0;
return 1;
}
}
}
return 0;
}
static inline bool updateQuadrant(unsigned int quadIndex) {
Quadrant* quad = &QUADRANTS[quadIndex];
for (int i = 0; i < SNAKES_PER_QUADRANT; i++) {
// update each snake in the quad. there are only really a few things to do:
// - find nearest neighbour to snake
// - check if bite
// - move and rotate snake
bool foundAtLeastOneOtherLiveSnakeInQuad = false;
Snake* snake = &quad->snakes[i];
uint16_t numSegments = snake->numSegments;
if (numSegments == 0) continue;
if (numSegments > longest) {
longest = numSegments; // just for fun.
}
// we now linear search for nearest tail to bite, early-outing on dead snakes,
// and very-close snakes (we technically do not always garuntee finding the 'nearest')
const uint16_t headX = snake->headX;
const uint16_t headY = snake->headY;
float nearestD = 999999.f; // arbitrary large-ish number
uint16_t nearestX = 0;
uint16_t nearestY = 0;
if (findNearestSnakeInQuad(quad, snake, i, nearestD, nearestX, nearestY, &foundAtLeastOneOtherLiveSnakeInQuad)) {
numDead++;
goto nextSnake; // we killed another snake, we can move on to the next snake.
};
if (!foundAtLeastOneOtherLiveSnakeInQuad) {
// we found 0 snakes in this quad (besides ourselves)
// this circumstance can only arise when there are a small number of snakes left
// , less than 2k at least, so we can just lazily iterate the rest of the quadrants.
for (int j = 0; j < NUM_QUADRANTS; j++) {
if (quadIndex == j) continue;
if (findNearestSnakeInQuad(&QUADRANTS[j], snake, -1, nearestD, nearestX, nearestY, &foundAtLeastOneOtherLiveSnakeInQuad)) {
numDead++;
goto nextSnake; // we killed another snake, we can move on to the next snake, after appending our draw data
}
}
}
if (!foundAtLeastOneOtherLiveSnakeInQuad) {
// we must be the only snake left!
return true;
}
// do the movement and rotation for this snake.
const float angle = atan2f((float)headY - (float)nearestY, (float)headX - (float)nearestX);
// it probably makes more sense for the smaller guys to be faster, but the simulation gets quite slow towards the end of it, so I do the opposite.
const float dx = -cos(angle) * 500.f*log(0.25f*snake->numSegments + 1) * deltaTime;
const float dy = -sin(angle) * 500.f*log(0.25f*snake->numSegments + 1) * deltaTime;
snake->headX += dx;
snake->headY += dy;
#if 1
// move the snake's angle towards angle |angle|, with some fixed radial speed, smoothly
const float snakeAngle = snakeThetaToRadians(snake->theta);
const float angleDelta = angle - snakeAngle;
//snake->theta = radiansToSnakeTheta(snakeAngle + ((2.f*PI*angleDelta)*0.0015f/(2.f*PI));
//snake->theta = radiansToSnakeTheta(fmin(snakeAngle + (2.f*PI*angleDelta)*(deltaTime/snake->numSegments)/(2.f*PI), angle));
snake->theta = radiansToSnakeTheta(snakeAngle + (angleDelta+2.f*PI)*deltaTime*100.f/snake->numSegments);
#else
snake->theta = radiansToSnakeTheta(angle);
#endif
// at this point, we know everything we need to know about this snake to populate the draw data for it.
// we have the head position, an angle, and a count of the number of segments, so we use this to generate
// points from head --> tail.
for (uint16_t p = 0; p < snake->numSegments; p++) {
Point* point = &pointBuffer[numPoints++];
calculateSegment(snake, p, point);
}
nextSnake: continue;
}
return false;
}
int main(void) {
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_VISIBLE, false); // hide window initially - while we set up stuff. show after.
glfwWindowHint(GLFW_RESIZABLE, false); // don't allow the user to re-size the window
glfwWindowHint(GLFW_CENTER_CURSOR, true); // center the cursor in the window when opening a fullscreen window
glfwWindowHint(GLFW_FOCUS_ON_SHOW, true); // focus the window when glfwShowWindow is called
#ifdef __APPLE__
// removes all deprecated opengl functionality from older opengl versions, required on MacOSX
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
GLFWmonitor* primaryMonitor = glfwGetPrimaryMonitor();
const GLFWvidmode* primaryMonitorMode = glfwGetVideoMode(primaryMonitor);
float initialWidth = 1138.0f;
float initialHeight = 640.0f;
// scale up the dimensions of the initial size of the window until it exceeds the size of the screen, then go with the one just before that
while (1) {
if ((initialHeight * 1.2f > primaryMonitorMode->height) || (initialWidth * 1.2f) > primaryMonitorMode->width) {
break;
}
initialHeight *= 1.2f;
initialWidth *= 1.2f;
}
windowWidth = (int) initialWidth;
windowHeight = (int) initialHeight;
Window = glfwCreateWindow(windowWidth, windowHeight, "flOw MMo", nullptr, nullptr);
if (Window == nullptr) {
printf("%s", "Failed to initialize GLFWwindow\n");
return 1;
}
glfwMakeContextCurrent(Window);
//--------------------------------------------------------------------------------
// initialize glad, resolve OpenGL function pointers
if (!gladLoadGLLoader((GLADloadproc) glfwGetProcAddress)) {
printf("%s", "Failed to initialize GLAD\n");
return 1;
}
//--------------------------------------------------------------------------------
// compile and link our shader.
// my apologies if this fails compilation on your machine.
// My main computer's OpenGL driver has been known to allow compilations where others fail it.
int success;
char infoLog[512];
// vertex...
const char* vertexShaderCode = R"(
#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in float aWeight;
flat out float vWeight;
void main() {
vWeight = aWeight;
gl_Position = vec4(aPos*2.0-1.0, 0.0, 1.0);
gl_PointSize = 10 + (1.0f - aWeight)*10;
}
)";
unsigned int vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShaderId, 1, &vertexShaderCode, nullptr);
glCompileShader(vertexShaderId);
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(vertexShaderId, 512, nullptr, infoLog);
printf("Failure compiling vertex shader!\n%s\nSource: %s\n", infoLog, vertexShaderCode);
return 1;
}
// fragment...
const char* fragmentShaderCode = R"(
#version 330 core
flat in float vWeight;
out vec4 FragColor;
void main() {
FragColor = vec4(vWeight + 0.5, 0.5f * vWeight, 0.2f / (vWeight+0.01), 1.0f);
}
)";
unsigned int fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShaderId, 1, &fragmentShaderCode, nullptr);
glCompileShader(fragmentShaderId);
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(fragmentShaderId, 512, nullptr, infoLog);
printf("Failure compiling fragment shader!\n%s\nSource: %s\n", infoLog, fragmentShaderCode);
return 1;
}
unsigned int shaderId = glCreateProgram();
glAttachShader(shaderId, vertexShaderId);
glAttachShader(shaderId, fragmentShaderId);
glLinkProgram(shaderId);
glGetProgramiv(shaderId, GL_LINK_STATUS, &success);
if (!success) {
glGetProgramInfoLog(shaderId, 512, nullptr, infoLog);
printf("Failure linking shader!\n%s\n", infoLog);
return 1;
}
checkError();
// use it, we only have one shader
glUseProgram(shaderId);
checkError();
//--------------------------------------------------------------------------------
srand(time(nullptr));
for (int i = 0; i < rand(); i++) rand(); // discard first few calls, randomly. 'rand()' has poor entropy
// initialize the game state. set up all the initial snake positions, etc.
initializeQuadrants(windowWidth, windowHeight);
//--------------------------------------------------------------------------------
// setup the VAO/VBO
unsigned int VAO, VBO;
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_UNSIGNED_SHORT, GL_TRUE, sizeof(Point), (void*)offsetof(Point, x));
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 1, GL_UNSIGNED_SHORT, GL_TRUE, sizeof(Point), (void*)offsetof(Point, weight));
//--------------------------------------------------------------------------------
// set global opengl state
glClearColor(0.25f, 0.52f, 0.54f, 1.0f);
glEnable(GL_PROGRAM_POINT_SIZE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glEnable(GL_CULL_FACE);
glfwShowWindow(Window); // make window visible before entering main loop
glfwRequestWindowAttention(Window);
while (!glfwWindowShouldClose(Window)) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// calculate timing metrics, delta time, etc.
double currentTime = glfwGetTime();
frameCounter++;
if (currentTime - lastFrameCountTime >= 1.0) {
msPerFrame = 1000.0/frameCounter;
numFramesInLastSecond = frameCounter;
frameCounter = 0;
lastFrameCountTime += 1.0;
static char windowTitle[256];
snprintf(windowTitle, 256, "flOw MMo - %.2f ms per frame, %lld fps, delta %.2f, num snakes: %u, num alive: %u, dead: %u, longest boi: %u", msPerFrame, numFramesInLastSecond, deltaTime, NUM_SNAKES, NUM_SNAKES-numDead, numDead, longest);
glfwSetWindowTitle(Window, windowTitle); // <-- this call is very slow :(
}
deltaTime = currentTime - lastFrameStartTime;
lastFrameStartTime = currentTime;
// set ourselves to close if you press escape
if (glfwGetKey(Window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(Window, true);
continue;
}
static double lastUpdateTime = 0.0f;
if ((currentTime - lastUpdateTime) < 0.0167f) {
continue; // we already updated in the last 16ms, skip to next frame
}
if (doFancyRestart) {
initializeQuadrants(windowWidth, windowHeight);
doFancyRestart = false;
} else {
// update game state:
bool gameOver = false;
for (int q = 0; q < NUM_QUADRANTS; q++) {
gameOver = updateQuadrant(q);
if (gameOver) break;
}
if (gameOver) {
printf("game over!\n");
doFancyRestart = true;
continue;
}
}
// upload draw data and render
glBufferData(GL_ARRAY_BUFFER, sizeof(Point)*NUM_SNAKES, nullptr, GL_DYNAMIC_DRAW);
glBufferData(GL_ARRAY_BUFFER, sizeof(Point)*NUM_SNAKES, pointBuffer, GL_DYNAMIC_DRAW);
glDrawArrays(GL_POINTS, 0, numPoints);
numPoints = 0;
checkError();
glfwSwapBuffers(Window);
glfwPollEvents(); // performs better on windows at the end of frame vs. start
}
glDeleteShader(vertexShaderId);
glDeleteShader(fragmentShaderId);
glDeleteProgram(shaderId);
glfwTerminate();
return 0;
}
Loading…
Cancel
Save